AMD’s EPYC 7000-Series Processors

As announced back at the official launch, AMD is planning to hit both the dual socket and single socket markets. With up to 32 cores, 64 threads, 2TB/socket support and 128 PCIe lanes per CPU, they believe that by offering a range of core counts and frequencies, they have the nous to attack Intel, even if it comes at a slight IPC disadvantage.

AMD’s main focus will be on the 2P parts, where each CPU will use 64 PCIe lanes (using the Infinity Fabric protocol) to connect to each other, meaning that in a 2P system there will still be 128 PCIe 3.0 lanes to go around for add-in devices. There will be the top four SKUs available initially, and the other parts should be in the hands of OEMs by the end of July. All the CPUs will have access to all 64MB of the L3 cache, except the 7200-series which will have access to half.

The new processors from AMD are called the EPYC 7000 series, with names such as EPYC 7301 and EPYC 7551P. The naming of the CPUs is as follows:

EPYC 7551P

  • EPYC = Brand
  • = 7000 Series
  • 30/55 = Dual Digit Number indicative of stack positioning / performance (non-linear)
  • 1 = Generation
  • P = Single Socket, not present in Dual Socket

So in the future, we will see second generation ‘EPYC 7302’ processors, or if AMD scales out the design there may be EPYC 5000 processors with fewer silicon dies inside, or EPYC 3000 with a single die but for the EPYC platform socket (obviously, those last two are speculation).

But starting with the 2P processors:

AMD EPYC Processors (2P)
  Cores
Threads
Frequency (GHz) L3 DRAM PCIe TDP Price
Base All Max
EPYC 7601 32 / 64 2.20 2.70 3.2 64 MB 8-Ch
DDR4
2666
MT/s
8 x16
128
PCIe
180W $4200
EPYC 7551 32 / 64 2.00 2.55 3.0 180W >$3400
EPYC 7501 32 / 64 2.00 2.60 3.0 155W/170W $3400
EPYC 7451 24 / 48 2.30 2.90 3.2 180W >$2400
EPYC 7401 24 / 48 2.00 2.80 3.0 155W/170W $1850
EPYC 7351 16 / 32 2.40 2.9 155W/170W >$1100
EPYC 7301 16 / 32 2.20 2.7 155W/170W >$800
EPYC 7281 16 / 32 2.10 2.7 32 MB 155W/170W $650
EPYC 7251 8 / 16 2.10 2.9 120W $475

The top part is the EPYC 7601, which is the CPU we were provided for in this comparison. This is a 32-core part with simultaneous multithreading, a TDP of 180W and a tray price of $4200. As the halo part, it also gets the good choice on frequencies: 2.20 GHz base, 3.2 GHz at max turbo (up to 12 cores active) and 2.70 GHz when all cores are active.

Moving down the stack, AMD will offer 24, 16 and 8-core parts. These will disable 1, 2 and 3 cores per CCX respectively, as we saw with the consumer Ryzen processors, and is done in order to keep core-to-core latencies more predictable (as well as keeping access to all the L3 cache). What is interesting to note is that AMD will offer a 32-core part at 155W (when using DDR4-2400) for $3400, which is expected to be very competitive compared to Intel (and support 2.66x more DRAM per CPU). 

The 16-core EPYC 7281, while having half the L3, will be available for $650, making an interesting 2P option. Even the bottom processor at the stack, the 8-core EPYC 7251, will support the full 2TB of DRAM per socket as well as 128 PCIe lanes, making it a more memory focused SKU and having almost zero competition on these sorts of builds from Intel. For software that requires a lot of memory but pays license fees per core/socket, this is a nice part.

For single socket systems, AMD will offer the following three processors:

AMD EPYC Processors (1P)
  Cores
Threads
Frequency (GHz) L3 DRAM PCIe TDP Price
Base All Max
EPYC 7551P 32 / 64 2.0 2.6 3.0 64 MB 8-Ch
DDR4
2666
MT/s
8 x16
128
PCIe
180W $2100
EPYC 7401P 24 / 48 2.0 2.8 3.0 155W/170W $1075
EPYC 7351P 16 / 32 2.4 2.9 155W/170W $750

These processors mirror the specifications of the 2P counterparts, but have a P in the name and slightly different pricing.

AMD's EPYC Server CPU Introducing Skylake-SP
POST A COMMENT

219 Comments

View All Comments

  • alpha754293 - Tuesday, July 11, 2017 - link

    Pity that OpenFOAM failed to run on Ubuntu 16.04.2 LTS. I would have been very interested in those results. Reply
  • farmergann - Tuesday, July 11, 2017 - link

    Are you trying to hide the fact that AMD's performance per watt absolutely dominates intel's, or have you simply overlooked one of, if not the, single most important aspects of server processors? Reply
  • Ryan Smith - Tuesday, July 11, 2017 - link

    Neither. We just had very little time to look at power consumption. It's also the metric we're the least confident in right now, as we'd like to have a better understanding of the quirks of the platform (which again takes more time). Reply
  • Carl Bicknell - Wednesday, July 12, 2017 - link

    Ryan / Ian,
    Just to let you know there are better chess benchmarks than the one you've chosen. Stockfish is an example of a newer program which better uses modern CPU architecture.
    Reply
  • NixZero - Tuesday, July 11, 2017 - link

    "AMD's MCM approach is much cheaper to manufacture. Peak memory bandwidth and capacity is quite a bit higher with 4 dies and 2 memory channels per die. However, there is no central last level cache that can perform low latency data coordination between the L2-caches of the different cores (except inside one CCX). The eight 8 MB L3-caches acts like - relatively low latency - spill over caches for the 32 L2-caches on one chip. "
    isnt skylake-x's l3 a victim cache too? and divided at 1.3mb for each core, not a monolytic one?
    Reply
  • Ian Cutress - Tuesday, July 11, 2017 - link

    That's what a 'spill-over' cache is - it accepts evicted cache lines. Reply
  • NixZero - Wednesday, July 12, 2017 - link

    so why its put as an advantage for intel cache, which is spill over too? Reply
  • JonathanWoodruff - Wednesday, July 12, 2017 - link

    Since the Intel one is all on one die, a miss to a "slice" of cache can be filled without DRAM-like latencies from another slice. Since AMD has it's last level caches spread across dies, going to another cache looks to be equivalent latency-wise to going to DRAM. It wouldn't necessarily have to be quite that bad, and I would expect some improvement here for Zen2. Reply
  • Martin_Schou - Tuesday, July 11, 2017 - link

    This has to be wrong:

    CPU Two EPYC 7601 (2.2 GHz, 32c, 8x8MB L3, 180W)
    RAM 512 GB (12x32 GB) Samsung DDR4-2666 @2400

    12 x 32 GB is 384 GB, and 12 sticks doesn't fit nicely into 8 channels. In all likelihood that's supposed to be 16x32 GB, as we see in the E52690
    Reply
  • Dr.Neale - Tuesday, July 11, 2017 - link

    I find myself puzzled by the curious omission in this article of a key aspect of Server architecture: Data Security.

    AMD has a LOT; Intel, not so much.

    I would think this aspect of Server "Performance" would be a major consideration in choosing which company's Architecture to deploy in a Secure Server scenario. Especially in light of Recent Revelations fuelling Hacking Headlines in the news, and Dominating Discussions on various social media websites.

    How much is Data Security worth?

    A topic of EPYC consequence!
    Reply

Log in

Don't have an account? Sign up now