Test Bed and Setup - Compiler Options

For the rest of our performance testing, we’re disclosing the details of the various test setups:

AMD - Dual EPYC 7763 / 75F3 / 7443 / 7343 / 72F3 

For today’s review in terms of now performance figure, we’re now using GIGABYTE’s new MZ72-HB0 rev.3.0 board as the primary test platform for the EPYC 7763, 75F3, 7443, 7343 and 72F3. The system is running under full default settings, meaning performance or power determinism as configured by AMD in their default SKU fuse settings.

CPU ​2x AMD EPYC 7763 (2.45-3.500 GHz, 64c, 256 MB L3, 280W) /
2x AMD EPYC 75F3 (3.20-4.000 GHz, 32c, 256 MB L3, 280W) /
2x AMD EPYC 7443 (2.85-4.000 GHz, 24c, 128 MB L3, 200W) /
2x AMD EPYC 7343 (3.20-3.900 GHz, 16c, 128 MB L3, 190W) /
2x AMD EPYC 72F3 (3.70-4.100 GHz, 8c, 256MB L3, 180W)
RAM 512 GB (16x32 GB) Micron DDR4-3200
Internal Disks Crucial MX300 1TB
Motherboard GIGABYTE MZ72-HB0 (rev. 3.0)
PSU EVGA 1600 T2 (1600W)

Software wise, we ran Ubuntu 20.10 images with the latest release 5.11 Linux kernel. Performance settings both on the OS as well on the BIOS were left to default settings, including such things as a regular Schedutil based frequency governor and the CPUs running performance determinism mode at their respective default TDPs unless otherwise indicated.

AMD - Dual EPYC 7713 / 7662

Due to not having access to the 7713 for this review, we’re picking up the older test numbers of the chip on AMD’s Daytona platform. We also tested the Rome EPYC 7662 – these latter didn’t exhibit any issues in terms of their power behaviour.

CPU 2x AMD EPYC 7713 (2.00-3.365 GHz, 64c, 256 MB L3, 225W) /
2x AMD EPYC 7662 (2.00-3.300 GHz, 64c, 256 MB L3, 225W)
RAM 512 GB (16x32 GB) Micron DDR4-3200
Internal Disks Varying
Motherboard Daytona reference board: S5BQ
PSU PWS-1200

AMD - Dual EPYC 7742

Our local AMD EPYC 7742 system, due to the aforementioned issues with the Daytona hardware, is running on a SuperMicro H11DSI Rev 2.0.

CPU ​2x AMD EPYC 7742 (2.25-3.4 GHz, 64c, 256 MB L3, 225W)
RAM 512 GB (16x32 GB) Micron DDR4-3200
Internal Disks Crucial MX300 1TB
Motherboard SuperMicro H11DSI0
PSU EVGA 1600 T2 (1600W)

As an operating system we’re using Ubuntu 20.10 with no further optimisations. In terms of BIOS settings we’re using complete defaults, including retaining the default 225W TDP of the EPYC 7742’s, as well as leaving further CPU configurables to auto, except of NPS settings where it’s we explicitly state the configuration in the results.

The system has all relevant security mitigations activated against speculative store bypass and Spectre variants.

Intel - Dual Xeon Platinum 8380

For our new Ice Lake test system based on the Whiskey Lake platform, we’re using Intel’s SDP (Software Development Platform 2SW3SIL4Q, featuring a 2-socket Intel server board (Coyote Pass).

The system is an airflow optimised 2U rack unit with otherwise little fanfare.

Our review setup solely includes the new Intel Xeon 8380 with 40 cores, 2.3GHz base clock, 3.0GHz all-core boost, and 3.4GHz peak single core boost. That’s unusual about this part as noted in the intro, it’s running at a default 205W TDP which is above what we’ve seen from previous generation non-specialised Intel SKUs.

CPU 2x Intel Xeon Platinum 8380 (2.3-3.4 GHz, 40c, 60MB L3, 270W)
RAM 512 GB (16x32 GB) SK Hynix DDR4-3200
Internal Disks Intel SSD P5510 7.68TB
Motherboard Intel Coyote Pass (Server System S2W3SIL4Q)
PSU 2x Platinum 2100W

The system came with several SSDs including Optane SSD P5800X’s, however we ran our test suite on the P5510 – not that we’re I/O affected in our current benchmarks anyhow.

As per Intel guidance, we’re using the latest BIOS available with the 270 release microcode update.

Intel - Dual Xeon Platinum 8280

For the older Cascade Lake Intel system we’re also using a test-bench setup with the same SSD and OS image as on the EPYC 7742 system.

Because the Xeons only have 6-channel memory, their maximum capacity is limited to 384GB of the same Micron memory, running at a default 2933MHz to remain in-spec with the processor’s capabilities.

CPU 2x Intel Xeon Platinum 8280  (2.7-4.0 GHz, 28c, 38.5MB L3, 205W)
RAM 384 GB (12x32 GB) Micron DDR4-3200 (Running at 2933MHz)
Internal Disks Crucial MX300 1TB
Motherboard ASRock EP2C621D12 WS
PSU EVGA 1600 T2 (1600W)

The Xeon system was similarly run on BIOS defaults on an ASRock EP2C621D12 WS with the latest firmware available.

Ampere "Mount Jade" - Dual Altra Q80-33

The Ampere Altra system we’re using the provided Mount Jade server as configured by Ampere. The system features 2 Altra Q80-33 processors within the Mount Jade DVT motherboard from Ampere.

In terms of memory, we’re using the bundled 16 DIMMs of 32GB of Samsung DDR4-3200 for a total of 512GB, 256GB per socket.

CPU ​2x Ampere Altra Q80-33 (3.3 GHz, 80c, 32 MB L3, 250W)
RAM 512 GB (16x32 GB) Samsung DDR4-3200
Internal Disks Samsung MZ-QLB960NE 960GB
Samsung MZ-1LB960NE 960GB
Motherboard Mount Jade DVT Reference Motherboard
PSU 2000W (94%)

The system came preinstalled with CentOS 8 and we continued usage of that OS. It’s to be noted that the server is naturally Arm SBSA compatible and thus you can run any kind of Linux distribution on it.

The only other note to make of the system is that the OS is running with 64KB pages rather than the usual 4KB pages – this either can be seen as a testing discrepancy or an advantage on the part of the Arm system given that the next page size step for x86 systems is 2MB – which isn’t feasible for general use-case testing and something deployments would have to decide to explicitly enable.

The system has all relevant security mitigations activated, including SSBS (Speculative Store Bypass Safe) against Spectre variants.

The system has all relevant security mitigations activated against the various vulnerabilities.

Compiler Setup

For compiled tests, we’re using the release version of GCC 10.2. The toolchain was compiled from scratch on both the x86 systems as well as the Altra system. We’re using shared binaries with the system’s libc libraries.

New Test Platform, New Mid & Low Core SKUs (EPYC 7443, 7343, 72F3) AMD Platform vs GIGABYTE: IO Power Overhead Gone
POST A COMMENT

58 Comments

View All Comments

  • mode_13h - Sunday, June 27, 2021 - link

    Thanks for this update. Exciting findings! Reply
  • Gondalf - Sunday, June 27, 2021 - link

    SPECint2017 is good but....SPECint2017 Rate to estimate the per-core performance, no no absolutely no. SPECint2017 Rate have a very small dataset and it can not be utilized to estimate the single core performance, we need of the full SPECint2017 workload, the only manner to bypass the crazy L3 of Ryzen. Half the article have a so so sense ( obviously SPEC Rate is very criticized by many and very likely means less than nothing, expeciallly if you rise the bar on L3 ), the other half nope, without sense.
    In fact Intel claim a new 10nm 32 cores superior than a 32 cores Milan, after all the two cores ( Zen 3 and Willow Cove) have around the same IPC, more or less, and being chiplets, 32 cores Milan is out of the games.
    Obviously in this article the world "latency" is hidden or so. A single die solution is always better than chiplet design under load with the same number of cores.
    Reply
  • Qasar - Sunday, June 27, 2021 - link

    and there is the highly biased anti amd post from gondalf that he is known for.

    " In fact Intel claim a new 10nm 32 cores superior than a 32 cores Milan, after all the two cores ( Zen 3 and Willow Cove) have around the same IPC, more or less, and being chiplets, 32 cores Milan is out of the games. "
    yea ok, more pr bs from intel that you blindly believe ? post a link to this. the fact that you start with " in fact intel claim" kind of point to it being bs.
    Reply
  • schujj07 - Monday, June 28, 2021 - link

    Gandalf missed a link I posed that has a 32c Intel vs 32c AMD. In that the AMD averages 20% better performance than the Intel across the entire test suite. https://www.servethehome.com/intel-xeon-gold-6314u... Reply
  • iAPX - Sunday, June 27, 2021 - link

    There's a lot to read and understand on the last chart (per-Thread score / Socket Perf), about usefulness of SMT (or not), about who is the per-Thread performance leader and also the per-Socket performance leader, with a notable exception, the Altra Q80-33.

    I would like to see these kind of chart more often, it sum-up things very clearly, while naturally you have to understand that it is just a long-story short, and have to read about specific performance depending on the payload (ie: DB as stated).

    Kudos!
    Reply
  • nordform - Thursday, July 1, 2021 - link

    Too bad Apple's M1 was left out ... it clearly would have smoked the "competition". Everything with a TDP higher than 25W is inappropriate, not to say obscene.

    Apple rules hands down
    Reply
  • Qasar - Friday, July 2, 2021 - link

    " Everything with a TDP higher than 25W is inappropriate, not to say obscene. " and why would that be ? Reply
  • mode_13h - Friday, July 2, 2021 - link

    That would be like drag racing a Tesla car against some 18-wheeled diesel trucks.

    Server CPUs are not optimized for low-thread performance. They're designed to scale, and have data fabrics to handle massive amounts of I/O that the M1 can't. It wouldn't be a fair (or relevant) comparison.

    Now, try running that Tesla car in a tractor pull and we'll see who's laughing!
    Reply
  • Oxford Guy - Thursday, July 8, 2021 - link

    Happy to have won another debate in which my suggestion was aggressively attacked.

    I said having dual channel DDR4 for Zen 3 was unfortunate, as DDR4 is so long in the tooth — a fact that dual channel configuration makes more salient. I said it would have been good for the company to add more value by giving it quad channel RAM or, if possible, a support for both DDR4 and DDR5 — something some mainstream Intel quads had (support for DDR3 and DDR4).

    My remark was derided mainly on the basis of the claim that dual channel is plenty. This new set of parts demonstrate the benefit of having more RAM and cache.

    Considering how high the core counts are for Zen 3 desktop CPUs and how much Apple has set people on notice about what’s possible in CPU performance...

    Also, part of the rebuttal was citing the existence of TR. That’s still Zen 2, eh? Can’t really go out and buy that rebuttal.

    Is the benefit of being able to stay with the AM4 socket bigger than having less starvation of the CPU, particularly given the very high core counts of CPUs like the 5950? TR may be everyone’s segmentation dream (particularly when it’s being laughingly sold with obsolete Zen 2 and subjected to rapid expensive motherboard orphaning) but I think having five motherboard specs is a bridge too far. Let the low-end have dual channel and no overclocking, dump TR, and consolidate the enthusiast boards to a single (not two) chipset. But... that’s me. I like more value versus little crumbs and redundancies. When a whopping two companies is the state of the competition, though, people become trained to celebrate banality.
    Reply
  • mode_13h - Thursday, July 8, 2021 - link

    > Zen 3 was unfortunate, as DDR4 is so long in the tooth ...
    > it would have been good for the company to add more value by giving it quad channel RAM

    Agreed. Would've been nice. In spite of that, the 5950X manages to show gains over the 5900X, but we can still wonder how much better it might be with more memory bandwidth.

    I wouldn't have an issue with quad-channel being reserved for their TR platform if:

    * they were more affordable

    * they brought Zen3 to the platform more promptly

    An interesting counter-point to consider is how little 8-channel RAM benefitted TR Pro:

    "In the tests that matter, most noticeably the 3D rendering tests, we’re seeing a 3% speed-up on the Threadripper Pro compared to the regular Threadripper at the same memory frequency and sub-timings."

    https://www.anandtech.com/show/16478/64-cores-of-r...

    That's much less benefit than I'd have expected, as a 64-core TR on quad-channel should be far more bandwidth-starved than a 16-core Ryzen on dual-channel. However, that same article features a micro-benchmark which shows the full potential of 8-channel. So, it's obviously workload-dependent.
    Reply

Log in

Don't have an account? Sign up now