Overclocking Results

When it comes to memory overclocking, there are several ways to approach the issue.  Typically memory overclocking is rarely required - only those attempting to run benchmarks need worry about pushing the memory to its uppermost limits.  It also depends highly on the memory kits being used - memory is similar to processors in the fact that the ICs are binned to a rated speed.  The higher the bin, the better the speed - however if there is a demand for lower speed memory, then the higher bin parts may be declocked to increase supply of the lower clocked component.  Similarly, for the high end frequency kits, less than 1% of all ICs tested may actually hit the speed of the kit, hence the price for these kits increase exponentially.

With this in mind, there are several ways a user can approach overclocking memory.  The art of overclocking memory can be as complex or as simple as the user would like - typically the dark side of memory overclocking requires deep in-depth knowledge of how memory works at a fundamental level.  For the purposes of this review, we are taking overclocking in three different scenarios:

a) From XMP, adjust Command Rate from 2T to 1T
b) From XMP, increase Memory Speed strap (e.g. 1333 MHz -> 1400 -> 1600)
c) From XMP, test a range of sub-timings (e.g. 10-12-12 to 13-15-15 to 8-10-10) and find the best MHz theses are rated.

There is plenty of scope to overclock beyond this, such as adjusting voltages or the voltage of the memory controller – for the purposes of this test we raise the memory voltage to the ‘next stage’ above its rated voltage (1.35V to 1.5V, 1.5V to 1.65V, 1.65V to 1.72V).  As long as a user is confident with adjusting these settings, then there is a good chance that the results here will be surpassed.  There is also the fact that individual sticks of memory may perform better than the rest of the kit, or that one of the modules could be a complete dud and hold the rest of the kit back.  For the purpose of this review we are seeing if the memory out of the box, and the performance of the kit as a whole, will work faster at the rated voltage.

In order to ensure that the kit is stable at the new speed, we run the Linpack test within OCCT for five minutes as well as the PovRay benchmark.  This is a small but thorough test, and we understand that users may wish to stability test for longer to reassure themselves of a longer element of stability.  However for the purposes of throughput, a five minute test will catch immediate errors from the overclocking of the memory.

With this in mind, the kit performed as follows:

Test PovRay OCCT
XMP 1603.85 76C
XMP, 2T to 1T Already 1T Already 1T
1800 9-11-9 1598.21 76C
1866 9-11-9 1593.88 76C
2000 9-11-9 No POST No POST

Off the bat our 1600 kit will jump to 1866 MHz in its stride, but 2000 at the same timings is a no-go.

Subtimings Peak MHz PovRay OCCT Final PI
7-9-7 1400 1613.60 77C 200
8-10-8 1600 1610.20 77C 200
9-11-9 1866 1623.81 78C 207
10-12-10 2000 1596.91 78C 200
11-13-11 2133 1620.29 78C 194
12-14-12 2200 1619.96 77C 183
13-15-13 2200 1609.89 77C 169

A base-line PI of 200 is a good result (1400 C7 through 2000 C10), showing that there is some headroom from the basic settings of around 10%.

IGP Compute ADATA XPG V1.0 2x8GB DDR3L-1600 C9 1.35V Conclusions
Comments Locked

35 Comments

View All Comments

  • Khenglish - Friday, December 6, 2013 - link

    They do. It just costs more. Tons of 1600 9-9-9 T1 1.35V 8GB sticks on newegg. Even 1866 10-10-10 T1 8GB sticks.

    The question is if your laptop supports 1.35V or not. Only 8 series and a few 7 series laptops will run at 1.35V. Other laptops will run the memory at 1.5V despite it being 1.35V, which is fun if your laptop allows overclocking (which unfortunately is just top end clevo and alienware), but a waste of money and power if not.
  • jeffbui - Saturday, December 7, 2013 - link

    Apple uses DDR3L in their Macbook Pros and LPDDR3 in their Air line
  • Xpl1c1t - Friday, December 6, 2013 - link

    Fail to see why this is something worth reviewing. Maybe in the 2009/2010 timeframe this would have been more relevant, but there were better performing kits available then @ 1.35v. Namely there were the GSkill ECO and Mushkin 996825 kits which were killer. I still run mine at 1700mhz 6-8-6-24-1T and 1.4v and am sure they could run well below 1.35v @ 1600.
  • StrangerGuy - Saturday, December 7, 2013 - link

    The more pressing question is the TOTAL lack of power consumption tests especially for standby states. C'mon who do you think the target customers are for low voltage RAM?
  • MrSpadge - Sunday, December 8, 2013 - link

    Those were probably 4 GB, or maybe even 2 GB modules.
  • jeffrey - Saturday, December 7, 2013 - link

    Ian Cutress,
    Hello! You keep writing articles about 1866/C9 being the minimum and to avoid 1600. Even going so far as to say, "Any kit 1600 MHz or less is usually bad news."

    However, this ignores 1600/C8 modules. The 1600/C8 score a 200 on your Performance Index at stock timings. This is at your recommended 200 level. There are several kits of 2x4 GB 1600/C8 on Newegg that have memory profiles of 8-8-8-24 at 1.5v. I'll repeat, these 1600 8-8-8-24 1.5v kits score 200 on the Performance Index and hit the current memory sweet spot for most people of 2x4 GB. This scores within around 3% of the 1866/C9 kits which have a Performance score of 207.

    The reason I bring this up is that the 1600 8-8-8-24 kits are often less expensive than the 1866/C9 kits and offer essentially all of the performance.

    I enjoy reading your articles and appreciate the volume that you have contributed lately!
  • Hairs_ - Saturday, December 7, 2013 - link

    if you look at the benchmarks for these articles, you'll see that the differences between any of the kits tested is either hairline marginal, within the boundaries of statistical error, or non existent with the exception of two tests: winrar 4.2 (and not earlier versions) and explicit solver. Since I doubt anyone is doing explicit solver on an Intel integrated graphics rig, and most people aren't using winrar, it's pretty clear that recommending anything other than a standard 1600 kit with decent timings is a waste of effort on Intel chips.

    However this appears to have slipped past anandtech's reviewers, so these meaningless articles continue.
  • GTVic - Saturday, December 7, 2013 - link

    That didn't make any sense. The benchmark tool gives a performance index. Whether people use the software is irrelevant.
  • Hairs_ - Sunday, December 8, 2013 - link

    it's entirely relevant. It proves that with the exception of two very specific and rare use cases, these ram kits make no difference to much cheaper ones.
  • ibemerson - Saturday, December 7, 2013 - link

    The reason I have mostly seen given for using low voltage memory is that it will supposedly last longer, and enable CPU's with on-die memory controllers to last longer, especially since Intel specifies 1.5v for memory, while many kits run at 1.65v. Some of us want computers that keep working for 10+ years.

    One question I had when researching a possible X-79 build involves the fact that installing 8 sticks of RAM on a board will cause the on-die memory controller to auto-downclock the memory because of the increased load. Does low voltage ram avoid this?

Log in

Don't have an account? Sign up now