Overclocking Results

When it comes to memory overclocking, there are several ways to approach the issue.  Typically memory overclocking is rarely required - only those attempting to run benchmarks need worry about pushing the memory to its uppermost limits.  It also depends highly on the memory kits being used - memory is similar to processors in the fact that the ICs are binned to a rated speed.  The higher the bin, the better the speed - however if there is a demand for lower speed memory, then the higher bin parts may be declocked to increase supply of the lower clocked component.  Similarly, for the high end frequency kits, less than 1% of all ICs tested may actually hit the speed of the kit, hence the price for these kits increase exponentially.

With this in mind, there are several ways a user can approach overclocking memory.  The art of overclocking memory can be as complex or as simple as the user would like - typically the dark side of memory overclocking requires deep in-depth knowledge of how memory works at a fundamental level.  For the purposes of this review, we are taking overclocking in three different scenarios:

a) From XMP, adjust Command Rate from 2T to 1T
b) From XMP, increase Memory Speed strap (e.g. 1333 MHz -> 1400 -> 1600)
c) From XMP, test a range of sub-timings (e.g. 10-12-12 to 13-15-15 to 8-10-10) and find the best MHz theses are rated.

There is plenty of scope to overclock beyond this, such as adjusting voltages or the voltage of the memory controller – for the purposes of this test we raise the memory voltage to the ‘next stage’ above its rated voltage (1.35V to 1.5V, 1.5V to 1.65V, 1.65V to 1.72V).  As long as a user is confident with adjusting these settings, then there is a good chance that the results here will be surpassed.  There is also the fact that individual sticks of memory may perform better than the rest of the kit, or that one of the modules could be a complete dud and hold the rest of the kit back.  For the purpose of this review we are seeing if the memory out of the box, and the performance of the kit as a whole, will work faster at the rated voltage.

In order to ensure that the kit is stable at the new speed, we run the Linpack test within OCCT for five minutes as well as the PovRay benchmark.  This is a small but thorough test, and we understand that users may wish to stability test for longer to reassure themselves of a longer element of stability.  However for the purposes of throughput, a five minute test will catch immediate errors from the overclocking of the memory.

With this in mind, the kit performed as follows:

Test PovRay OCCT
XMP 1603.85 76C
XMP, 2T to 1T Already 1T Already 1T
1800 9-11-9 1598.21 76C
1866 9-11-9 1593.88 76C
2000 9-11-9 No POST No POST

Off the bat our 1600 kit will jump to 1866 MHz in its stride, but 2000 at the same timings is a no-go.

Subtimings Peak MHz PovRay OCCT Final PI
7-9-7 1400 1613.60 77C 200
8-10-8 1600 1610.20 77C 200
9-11-9 1866 1623.81 78C 207
10-12-10 2000 1596.91 78C 200
11-13-11 2133 1620.29 78C 194
12-14-12 2200 1619.96 77C 183
13-15-13 2200 1609.89 77C 169

A base-line PI of 200 is a good result (1400 C7 through 2000 C10), showing that there is some headroom from the basic settings of around 10%.

IGP Compute ADATA XPG V1.0 2x8GB DDR3L-1600 C9 1.35V Conclusions
Comments Locked

35 Comments

View All Comments

  • azazel1024 - Friday, December 6, 2013 - link

    Can't really argue most of the points.

    However, I find it mildly useful. I have a 2x4GB kit in my server, which is on nearly 24/7 (Task scheduler pulls it down to S3 from 1am back awake at 6am, because no one is ever awake to use it them).

    I can run it at 1.2v since it is a G1610 Celeron, so only 1333mhz and its a G.Skill Sniper 1.25v DDR3 1600Mhz kit. Lowest I could go before was a single DIMM 4GB 1.5v module I could run at 1.4v before things got wonky.

    Difference between the two DIMMs at 1.2v and 1.5v though is around 1.5W at idle on my kill-a-watt and around 2-3w when hitting the server with a heavy load. Not much, but it is a bit of green ePeen for me, and the thing does run close to 24x7. Sure, its still probably only $2 a year, but I am hoping to get several years out of the machine or at least the memory.

    My desktop has 1.35V CAS9 kit in it, 4x4GB Mushkin DDR3 1600 kit. The advantage there is it'll run at 1866Mhz CAS10 and 1.38v stable. It was cheaper than any 2x8GB kits on the market at the time and actually slightly cheaper than any 4x4GB DDR3 1866 kits.

    Case temp is a degree lower at 1.38v than at 1.5v and it also runs about 4w less under load.

    It isn't much, but I pride myself on having low(ish) power setups, as well as running as quiet and cool as I can, plus especially the 16GB kit in my desktop, it was actually cheaper to get the LoVo memory and upclock it to 1866Mhz than it was to get a native 1866Mhz kit at the time.
  • The Von Matrices - Friday, December 6, 2013 - link

    You make a very good point that I never though of before.

    S3 sleep still provides power to refresh the memory. If you are like me and never shut down your computer (instead using sleep) then your memory is consuming energy 24/7 no matter how infrequently the computer is powered on.

    If you don't use your computer a lot but do use sleep, then the memory could account for a significant portion of the computer's overall energy consumption.
  • gamoniac - Sunday, December 8, 2013 - link

    I have my server running 24x7, too, but the saving here is really not that significant. Basically, accidentally leaving a 60-watt light blub on over night would undo months of saving gained from this low-voltage RAM.
  • ShieTar - Tuesday, December 10, 2013 - link

    You're supposed to replace those bulbs by 10-watt LEDs as well ;-)

    It's not always about the current saving potential. Sure, 1W of 24/7 usage is only 2$ to 3$ of savings, depending on where you live, today. But with the increasing number of customers and constant or decreasing sources for electricity, it makes sense for us as a civilization to invest into power-saving technologies. So the low-voltage RAM is a fundamentally good Idea, and if the combined cost of Hardware and Electricity is comparable to normal-voltage modules, it makes plenty of sense to buy them. Even if you don't save enormous amounts of money right now, at least this module can now become the new baseline if everybody goes for it.
  • MrSpadge - Sunday, December 8, 2013 - link

    During sleep the data in memory is refreshed, but I'm pretty sure there is no clock signal supplied, so it's not actually working. Hence power consumption should be significantly lower than running normally, I gues by about 1 to 2 orders of magnitude.
  • JoannWDean - Saturday, December 14, 2013 - link

    my buddy's aunt earned 14958 dollar past week. she been working on the laptop and got a 510900 dollar home. All she did was get blessed and put into action the information leaked on this site... http://cpl.pw/OKeIJo
  • Cygni - Friday, December 6, 2013 - link

    What about heat? The real target market for these seems to be people (like me) interested in making true silent high performance PCs. Because its nearly 2014 and it's time to stop putting leaf blowers on the side of your case to play a video game.

    I would be interested in seeing what difference the voltage makes, and the comparison to the other kits.
  • BigLeagueJammer - Friday, December 6, 2013 - link

    Here's an article with tests performed by Puget Systems:
    http://www.pugetsystems.com/labs/articles/Technolo...

    The conclusion they found was that the lower voltage RAM made a 1-2 degree difference in CPU temperatures. That's not huge, but if you're striving for a really quiet build, it could help make it little bit more quiet.
  • MrSpadge - Sunday, December 8, 2013 - link

    Playing a game you probably have a CPU+Mainboard+RAM drawing about 100 W, and a GPU drawing at least 100 W. Now subtract 1 to 2 W from low voltage RAM from this and you get less than 1% difference. This won't be audible even in direct comparisons.
  • extide - Friday, December 6, 2013 - link

    Regarding Low TDP CPU's.

    A lot of people don't seem to realize that Low TDP CPU's are basically the exact same thing as a regular TDP chip, except they don't turbo as much, hit as high freq/etc.

    The point is a 84W i7 4770 will idle down just as low as a 35W i7-4765T, for example. It is only when the CPU is fully pegged that the lower TDP actually makes a difference.

    For a normal desktop user, just browsing the internet/etc, this means that a 84W chip vs a 35W chip will make almost no difference, especially if they are the exact same configuration. (quadcore vs dualcore, same number of EU's in the graphics, etc) The CPU is idle/clocked down via speed step/etc most of the time anyways.

    Back in the day, there used to be a bigger difference as the low-TDP chips had the same clocks and performance as the regular ones but ran on less volts. Back then, those low power chips were great. These days the low TDP ones typically run in similar voltage ranges, and whatnot but essentially their ability to reach into the higher ranges (voltage, clockspeed, etc) is significantly reduced. They are basically the exact same chips. There may be some mild binning involved, but if you really want a good-binned CPU for low power then you will probably need to get a mobile/laptop chip.

    So basically unless you are running F@H or something, a T or S series CPU is really pointless. Unless you are an OEM, and NEED to strictly adhere to some thermal limit due to a small cooler or something, I see almost zero reason to go for a T/S series CPU, ES{ECIALLY when they typically cost more!

    I see lots of people using T/S series cpu's in things like PC-based routers. That is a prime example of a place where it is pointless to do so, because the cpu will be idle 99% of the time anyways, and a normal TDP chip can clock/volt down just as much as a low tdp chip.

    Just some food for thought. Sorry, it is a tiny bit off-topic with regards to the actual article, but you do mention power savings and low TDP chips in there.

Log in

Don't have an account? Sign up now