SPEC2006 & 2017: Industry Standard - ST Performance

Single-threaded performance of the new M1 is certainly one of its key aspects, where the new Firestorm cores definitely punch far above their power class. We had hinted in our preview A14 analysis article that the M1 may well be ending up as not only the top-performing low-power mobile CPU out there, but actually end up as the top-performing absolute performance amongst all CPUs in the market. The A14 fell short of that designation, but the M1 is an even faster implementation of the new Firestorm cores.

It’s to be noted that we’re comparing the M1 to the absolute best desktop and laptop platforms on the market right now, solely looking at absolute best single-threaded performance.

SPECint2006 Speed Estimated Scores

In SPECint2006, we’re now seeing the M1 close the gap to AMD’s Zen3, beating it in several workloads now, which increasing the gap to Intel’s new Tiger Lake design as well as their top-performing desktop CPU, which the M1 now beats in the majority of workloads.

Since our A14 results, we’ve been able to track down Apple’s compiler setting which increases the 456.hmmer by such a dramatic amount – Apple defaults the “-mllvm -enable-loop-distribute=true” in their newest compiler toolchain whilst it needs to be enabled on third-party LLVM compilers. A 5950X with the flag enabled increases its score to 91.64, but also while seeing some regressions in other tests. We haven’t had time to re-test further platforms.

The M1’s performance boost in 462.libquantum is due to the increased L2 cache, as well as the doubled memory bandwidth of the system, something that this workload is very hungry of.

SPECfp2006(C/C++) Speed Estimated Scores

In the fp2006 workloads, we’re seeing the M1 post very large performance boosts relative to the A14, meaning that it now is able to claim the best performance out of all CPUs being compared here.

SPEC2006 Speed Estimated Total

In the overall score, the M1 increases the scores by 9.5% and 17% over the A14. In the integer score, the M1 takes the lead here, although if we were to account for the 456.hmmer discrepancy it would still favour the Zen3-based 5950X. In the floating-point score however, the Apple M1 now takes a large lead ahead, making it the best performing CPU core.

We’ve had a lot arguments about whether 2006 is relevant or not in today’s landscape. We have practical reasons for not yet running SPEC2017 on mobile devices, but given that the new Apple Silicon M1 runs on macOS, these concerns are not valid, thus enabling us to also run the more modern benchmark suite.

It’s to be noted that currently we do not have a functional Fortran compiler on Apple Silicon macOS systems, thus we have to skip several workloads in the 2017 suite, which is why they’re missing from the graphs. We’re concentrating on the remaining C/C++ workloads.

SPECint2017(C/C++) Rate-1 Estimated Scores

The situation doesn’t change too much with the newer SPECint2017 suite. Apple’s Firestorm core here remains extremely impressive, at worst matching up Intel’s new Tiger Lake CPU in single-threaded performance, and at best, keeping up and sometimes beating AMD’s new Zen3 CPU in the new Ryzen 5000 chips.

Apple’s performance is extremely balanced across the board, but what stands out is the excellent 502.gcc_r performance where it takes a considerable leap ahead of the competition, meaning that the new Apple core does extremely well on very complex code and code compiling.

SPECfp2017(C/C++) Rate-1 Estimated Scores

In SPECfp2017, we’re seeing something quite drastic in terms of the scores. The M1 here at worst is a hair-width’s behind AMD’s Zen3, and at best is posting the best absolute performance of any CPU in the market. These are incredible scores.

SPEC2017(C/C++) Rate-1 Estimated Total

In the overall new SPEC2017 int and fp charts, the Apple Silicon M1 falls behind AMD’s Zen3 in the integer performance, however takes an undisputable lead in the floating-point suite.

Compared to the Intel contemporary designs, the Apple M1 is able to showcase a performance leap ahead of the best the company has to offer, with again a considerable strength in the FP score.

While AMD’s Zen3 still holds the leads in several workloads, we need to remind ourselves that this comes at a great cost in power consumption in the +49W range while the Apple M1 here is using 7-8W total device active power.

M1 GPU Performance: Integrated King, Discrete Rival SPEC2017 - Multi-Core Performance
Comments Locked

682 Comments

View All Comments

  • Zagor Te Nay - Sunday, November 22, 2020 - link

    Unrelated to how good M1 is - and I think it is really darn good, and will only get better as devs start supporting it natively (although Rosetta 2 seems to be doing fine, all considered) - Intel is not hard to beat. AMD has done it with having much less money than Apple has.

    As someone said, Intel has stagnated themselves out of competition. They are more responsible for their own sad current situation than AMD or Apple, really.
  • Spunjji - Monday, November 23, 2020 - link

    @Zagor Te Nay - I don't think the fact that AMD have finally clawed out a lead over Intel indicates that they're easy to beat.

    Nvidia had a crack at CPU design a while back and were forced to pack it in. Samsung have tried to out-engineer Apple with large ARM core designs and have failed. It's not clear whether Qualcomm can't compete or can't be *bothered* to compete, but they've never come within a year of Apple's designs and are usually around 18 months behind.

    These are all large, wealthy, serious organisations. To be honest I'm impressed by Apple, and even more so by AMD.
  • beowulfey - Tuesday, November 17, 2020 - link

    I mean, the point of benchmarks is to compare CPUs that are available today, right?

    In the hypothetical future where Zen 4 is comparable to an M1, I would counter that by then the latest Apple M3 or whatever will have improved as well, so...
  • Tams80 - Tuesday, November 17, 2020 - link

    But Zen 2 is roughly comparable to the M1.

    No one is claiming that other future processors will only match the M1. Well, perhaps other than you in your imagination.
  • halo37253 - Tuesday, November 17, 2020 - link

    M1 is slower than 4800u when it comes to multithread workloads. Even on these video compression tests.... While using slightly more power at most. 22watts vs 25watts while running cinebench...

    Zen3 mobile will be out before M2, and will most likely have no problems matching or beating M2 in nearly any task while using same amount of power. While being 7nm

    Only reason why M1 is even remotely impressive is largely thanks to 5nm. Apple managed to compete with Zen 2 in terms of power efficiency with 5nm, even though Zen 2 is 7nm. This M1 chip is no more impressive than the 4800u in terms of Performance/watt. M1 just has higher single thread vs weaker multi thread....
  • Spunjji - Tuesday, November 17, 2020 - link

    @halo36253 - have to disagree with you on that part. A 5nm process does not magically make a 3.2Ghz CPU act like one boosting north of 4Ghz. M1 is particularly impressive for power draw, which has a lot to do with that process, but it's also quite fast in its own right. Beating out Intel and duelling with a newly-resurgent AMD is an impressive showing for their first SoC designed for anything more than an iPad.

    It's also impressive that it is even on 5nm in the first place. It would have taken lots of work between designers and the foundry to pull that off a year before AMD will make the move.
  • halo37253 - Tuesday, November 17, 2020 - link

    I probably was a little too critical.

    Yes the M1 deserves all the praise it can get. But some of that praise should be on TSMC, they are on fire. TSMC and Samsung have leapfrogged Intel. And Honestly if Intel's Fabs were able to keep up, this move to Arm would have been more questionable. I too think it made more sense to go with their own chip than risk the mac lineup with AMD processors.

    I just wonder how well they can scale their Arm chips of, if they ever do. As if they ever really want to transition the Macbook pro 16, iMac or Macpro We need a Ryzen competitor. Intel was already behind in there areas and users have been wanting a high core count Mac for a long time now. Sadly the idea of running VMs on a Mac is looking grim.

    Apple's Silicon is just what I figured it would be when it was allowed to actually suck power and stay cool. While the 22-25watt wall is most likely firmware enforced to keep the chip from pulling more power than designed for. GPU and CPU performance is top notch. This is what Arm should be. Now only if Apple and MS would work together to get windows for ARM working in bootcamp.

    I just hope we one day see a 8-16 core M series chip from apple only packing high power cores. I'd love to see a ARM chip with a TDP of 65-95watts that doesn't consist of 100 cores.

    Many people have been under the spell that Apple's silicon is somehow magically leagues above everyone else. They are no doubt good, and do give AMD a run for their Money. Funny to say that both AMD and Apple are making Intel look bad.

    I've been wanting a ARM laptop for a long time now TBH. And been putting off getting the Wife a Macbook till these new ARM chips hit the market. Now I just need to hope MS works with Apple on getting Windows onto this. As as soon as windows for ARM allows for x64 apps to run, windows would be the choice for getting games running on these devices.
  • chris.parker@flipingreat.com - Tuesday, November 17, 2020 - link

    Why Windows... ??? All apps can run Arm, windows is not something you run, its a desktop, that I personally practically never use. Applications, now that's what I use. MS has announced a native Arm M1 version of Office, and I am in 100%
  • tuxRoller - Tuesday, November 17, 2020 - link

    Oh yeah, this is far less critical🙄
  • Eric S - Tuesday, November 17, 2020 - link

    TSMC has been doing very well. Although remember that a lot of their work is financed by a cash infusion from Apple.

Log in

Don't have an account? Sign up now